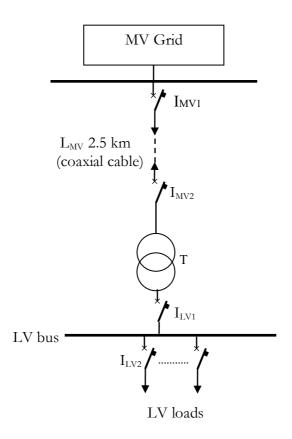
## Exercise 6.5 – Computation of homopolar impedance of ungrounded MV networks


For the electrical distribution network represented in the figure below, you must:

- 1. define and verify the characteristics of the medium-voltage (MV) cable L<sub>MV</sub> (EPR insulation), considering a maximum intervention time of  $t_{sc}^{I_{MV1}} = 300ms$  for circuit breaker I<sub>MV1</sub> after a three-phase short circuit.
- 2. Determine the direct, inverse and homopolar impedances of the medium-voltage network without considering the presence of the cable L<sub>MV</sub>.
- 3. Determine the homopolar impedance of the medium-voltage network considering the presence of the cable L<sub>MV</sub> and re-compute the phase-to-ground short circuit current of the MV grid.

## Medium-voltage grid data (MV grid): • Nominal voltage: $V_n^{MV} = 20 \ kV$

- Neutral: ungrounded
- Short-circuit power:  $S_{sc}^{MV} = 500 \ MVA$
- Phase-to-ground short circuit current of the MV grid:  $I_{sc,ph-gnd}^{MV} = 75 A$
- Ratio  $R_{sc}^{MV}/X_{sc}^{MV} = 0$  **MV/LV transformer T data:**

- Nominal power:  $S_n^T = 400 \, kVA$
- Nominal transformer ratio:  $V_{n1}^T/V_{n2}^T = 20/0.4 \, kV$
- Winding connection: Delta (20 kV winding) Star grounded (0.4 kV winding)
- Short circuit voltage  $V_{sc}^T = 0.05pu$
- Short circuit copper losses  $P_{sc}^T = 4.5 \text{ kW}$



## EE-362 Power Systems Analysis

Characteristics of medium voltage cables (20kV) with EPR insulation (Joule integral  $K = 143 \frac{A \cdot S^{\frac{1}{2}}}{mm^2}$ ).

| Cross section | Resistance pul         | Reactance pul          | Shunt capacitance | Maximum |
|---------------|------------------------|------------------------|-------------------|---------|
| $[mm^2]$      | $[\Omega/\mathrm{km}]$ | $[\Omega/\mathrm{km}]$ | pul               | Current |
|               |                        |                        | [µF/km]           | [A]     |
| 25            | 0.929                  | 0.15                   | 0.18              | 157     |
| 35            | 0.670                  | 0.14                   | 0.17              | 190     |
| 50            | 0.495                  | 0.13                   | 0.19              | 228     |
| 70            | 0.344                  | 0.13                   | 0.21              | 284     |
| 95            | 0.248                  | 0.12                   | 0.23              | 346     |
| 120           | 0.198                  | 0.12                   | 0.25              | 399     |